HISTORIA DE LOS ENGRANAJES


ENGRANAJES
Se denomina engranaje o ruedas dentadas al mecanismo utilizado para transmitir potencia de un componente a otro dentro de una máquina. Los engranajes están formados por dos ruedas dentadas, de las cuales la mayor se denomina corona' y la menor 'piñón'. Un engranaje sirve para transmitir movimiento circularmediante contacto de ruedas dentadas. Una de las aplicaciones más importantes de los engranajes es la transmisión del movimiento desde el eje de una fuente de energía, como puede ser un motor de combustión interna o un motor eléctrico, hasta otro eje situado a cierta distancia y que ha de realizar un trabajo. De manera que una de las ruedas está conectada por la fuente de energía y es conocido como engranaje motor y la otra está conectada al eje que debe recibir el movimiento del eje motor y que se denomina engranaje conducido. Si el sistema está compuesto de más de un par de ruedas dentadas, se denomina 'tren.
La principal ventaja que tienen las transmisiones por engranaje respecto de la transmisión por poleas es que no patinan como las poleas, con lo que se obtiene exactitud en la relación de transmisión.

Historia

Molde chino para fabricar engranajes de bronce (siglos II a. C. a III d. C.).
Desde épocas muy remotas se han utilizado cuerdas y elementos fabricados en madera para solucionar los problemas de transporte, impulsión, elevación y movimiento. Nadie sabe a ciencia cierta dónde ni cuándo se inventaron los engranajes. La literatura de la antigua China, Grecia, Turquía y Damas comencionan engranajes pero no aportan muchos detalles de los mismos.

Mecanismo de Antikythera.
El mecanismo de engranajes más antiguo de cuyos restos disponemos es el mecanismo de Antikyithera.2 Se trata de una calculadora astronómica datada entre el 150 y el 100 a. C. y compuesta por al menos 30 engranajes de bronce con dientes triangulares. Presenta características tecnológicas avanzadas como por ejemplo trenes deengranajes epicicloidales que, hasta el descubrimiento de este mecanismo, se creían inventados en el siglo XIX. Por citas de Cicerón se sabe que el de Anticitera no fue un ejemplo aislado sino que existieron al menos otros dos mecanismos similares en esa época, construidos por Arquímedes y por Posidonio. Por otro lado, a Arquímedes se le suele considerar uno de los inventores de los engranajes porque diseñó un tornillo sin fin.
En China también se han conservado ejemplos muy antiguos de máquinas con engranajes. Un ejemplo es el llamado "carro que apunta hacia el Sur" (120-250 d. C.), un ingenioso mecanismo que mantenía el brazo de una figura humana apuntando siempre hacia el Sur gracias al uso de engranajes diferenciales epicicloidales. Algo anteriores, de en torno a 50 d. C., son los engranajes helicoidales tallados en madera y hallados en una tumba real en la ciudad china de Shensi.
No está claro cómo se transmitió la tecnología de los engranajes en los siglos siguientes. Es posible que el conocimiento de la época del mecanismo de Anticitera sobreviviese y contribuyese al florecimiento de la ciencia y la tecnología en el mundo islámico de los siglos IX al XIII. Por ejemplo, un manuscrito andalusí del siglo XI menciona por vez primera el uso en relojes mecánicos tanto de engranajes epicíclicos como de engranajes segmentados. Los trabajos islámicos sobre astronomía y mecánica pueden haber sido la base que permitió que volvieran a fabricarse calculadoras astronómicas en la Edad Moderna. En los inicios del Renacimiento esta tecnología se utilizó en Europa para el desarrollo de sofisticados relojes, en la mayoría de los casos destinados a edificios públicos como catedrales.

Engranaje helicoidal de Leonardo.
Leonardo da Vinci, muerto en Francia en 1519, dejó numerosos dibujos y esquemas de algunos de los mecanismos utilizados hoy diariamente, incluido varios tipos de engranajes de tipo helicoidal.
Los primeros datos que existen sobre la transmisión de rotación con velocidad angular uniforme por medio de engranajes, corresponden al año 1674, cuando el famoso astrónomo danés Olaf Roemer (1644-1710) propuso la forma o perfil del diente en epicicloide.
Robert Willis (1800-1875), considerado uno de los primeros ingenieros mecánicos, fue el que obtuvo la primera aplicación práctica de la epicicloide al emplearla en la construcción de una serie de engranajes intercambiables. De la misma manera, de los primeros matemáticos fue la idea del empleo de la evolvente de círculo en el perfil del diente, pero también se deben a Willis las realizaciones prácticas. A Willis se le debe la creación del odontógrafo, aparato que sirve para el trazado simplificado del perfil del diente de evolvente.
Es muy posible que fuera el francés Phillipe de Lahire el primero en concebir el diente de perfil en evolvente en 1695, muy poco tiempo después de que Roemer concibiera el epicicloidal.
La primera aplicación práctica del diente en evolvente fue debida al suizo Leonhard Euler (1707). En 1856, Christian Schiele descubrió el sistema de fresado de engranajes rectos por medio de la fresa madre, pero el procedimiento no se llevaría a la práctica hasta 1887, a base de la patente Grant.5

Transmisión antigua.
En 1874, el norteamericano William Gleason inventó la primera fresadora de engranajes cónicos y gracias a la acción de sus hijos, especialmente su hija Kate Gleason (1865-1933), convirtió a su empresa Gleason Works, radicada en Rochester (Nueva York, EEUU) en una de los fabricantes de máquinas herramientas más importantes del mundo.
En 1897, el inventor alemán Robert Hermann Pfauter (1885-1914), inventó y patentó una máquina universal de dentar engranajes rectos y helicoidales por fresa madre. A raíz de este invento y otras muchos inventos y aplicaciones que realizó sobre el mecanizado de engranajes, fundó la empresa Pfauter Company que, con el paso del tiempo, se ha convertido en una multinacional fabricante de todo tipo de máquinas-herramientas.
En 1906, el ingeniero y empresario alemán Friedrich Wilhelm Lorenz (1842-1924) se especializó en crear maquinaria y equipos de mecanizado de engranajes y en 1906 fabricó una talladora de engranajes capaz de mecanizar los dientes de una rueda de 6 m de diámetro, módulo 100 y una longitud del dentado de 1,5 m.

Antigua grúa accionada con engranajes ubicada en el puerto de Sevilla
A finales del siglo XIX, coincidiendo con la época dorada del desarrollo de los engranajes, el inventor y fundador de la empresa Fellows Gear Shaper Company, Edwin R. Fellows (1846-1945), inventó un método revolucionario para mecanizar tornillos sin fin glóbicos tales como los que se montaban en las cajas de dirección de los vehículos antes de que fuesen hidráulicas.
En 1905, M. Chambon, de Lyon (Francia), fue el creador de la máquina para el dentado de engranajes cónicos por procedimiento de fresa madre. Aproximadamente por esas fechas André Citroën inventó los engranajes helicoidales dobles.


Tipos de engranajes

La principal clasificación de los engranajes se efectúa según la disposición de sus ejes de rotación y según los tipos de dentado. Según estos criterios existen los siguientes tipos de engranajes:

Píñón recto de 18 dientes.


Ejes paralelos


Engranajes especiales.Parque de las Ciencias de Granada.
  • Cilíndricos de dientes rectos
  • Cilíndricos de dientes helicoidales
  • Doble helicoidales


Ejes perpendiculares

  • Helicoidales cruzados
  • Cónicos de dientes rectos
  • Cónicos de dientes helicoidales
  • Cónicos hipoides
  • De rueda y tornillo sin fin


Por aplicaciones especiales se pueden citar

  • Planetarios
  • Interiores
  • De cremallera


Por la forma de transmitir el movimiento se pueden citar

  • Transmisión simple
  • Transmisión con engranaje loco
  • Transmisión compuesta. Tren de engranajes


Transmisión mediante cadena o polea dentada

  • Mecanismo piñón cadena
  • Polea dentada


Características que definen un engranaje de dientes rectos

Artículo principal: Cálculo de engranajes

Elementos de un engranaje.

Representación del desplazamiento del punto de engrane en un engranaje recto.
Los engranajes cilíndricos rectos son el tipo de engranaje más simple y corriente que existe. Se utilizan generalmente para velocidades pequeñas y medias; a grandes velocidades, si no son rectificados, o ha sido corregido su tallado, producen ruido cuyo nivel depende de la velocidad de giro que tengan.
  • Diente de un engranaje: son los que realizan el esfuerzo de empuje y transmiten la potencia desde los ejes motrices a los ejes conducidos. El perfil del diente, o sea la forma de sus flancos, está constituido por dos curvas evolventes de círculo, simétricas respecto al eje que pasa por el centro del mismo.
  • Módulo: el módulo de un engranaje es una característica de magnitud que se define como la relación entre la medida del diámetro primitivo expresado en milímetros y el número de dientes. En los países anglosajones se emplea otra característica llamada Diametral Pitch, que es inversamente proporcional al módulo. El valor del módulo se fija mediante cálculo de resistencia de materiales en virtud de la potencia a transmitir y en función de la relación de transmisión que se establezca. El tamaño de los dientes está normalizado. El módulo está indicado por números. Dos engranajes que engranen tienen que tener el mismo módulo.
  • Circunferencia primitiva: es la circunferencia a lo largo de la cual engranan los dientes. Con relación a la circunferencia primitiva se determinan todas las características que definen los diferentes elementos de los dientes de los engranajes.
  • Paso circular: es la longitud de la circunferencia primitiva correspondiente a un diente y un vano consecutivos.
  • Espesor del diente: es el grosor del diente en la zona de contacto, o sea, del diámetro primitivo.
  • Número de dientes: es el número de dientes que tiene el engranaje. Se simboliza como (Z). Es fundamental para calcular la relación de transmisión. El número de dientes de un engranaje no debe estar por debajo de 18 dientes cuando el ángulo de presión es 20º ni por debajo de 12 dientes cuando el ángulo de presión es de 25º.
  • Diámetro exterior: es el diámetro de la circunferencia que limita la parte exterior del engranaje.
  • Diámetro interior: es el diámetro de la circunferencia que limita el pie del diente.
  • Pie del diente: también se conoce con el nombre de dedendum. Es la parte del diente comprendida entre la circunferencia interior y la circunferencia primitiva.
  • Cabeza del diente: también se conoce con el nombre de adendum. Es la parte del diente comprendida entre el diámetro exterior y el diámetro primitivo.
  • Flanco: es la cara interior del diente, es su zona de rozamiento.
  • Altura del diente: es la suma de la altura de la cabeza (adendum) más la altura del pie (dedendum).
  • Angulo de presión: el que forma la línea de acción con la tangente a la circunferencia de paso, φ (20º ó 25º son los ángulos normalizados).
  • Largo del diente: es la longitud que tiene el diente del engranaje
  • Distancia entre centro de dos engranajes: es la distancia que hay entre los centros de las circunferencias de los engranajes.
  • Relación de transmisión: es la relación de giro que existe entre el piñón conductor y la rueda conducida. La Rt puede ser reductora de velocidad o multiplicadora de velocidad. La relación de transmisión recomendada7 tanto en caso de reducción como de multiplicación depende de la velocidad que tenga la transmisión con los datos orientativos que se indican:
Velocidad lenta: (R_t = \frac {1}{10})
Velocidad normal : (R_t = \frac {1}{7} - \frac {1}{6})
Velocidad elevada: (R_t = \frac {1}{4} -  \frac {1}{2})
Hay dos tipos de engranajes, los llamados de diente normal y los de diente corto cuya altura es más pequeña que el considerado como diente normal. En los engranajes de diente corto, la cabeza del diente vale (0,75 \cdot M), y la altura del pie del diente vale (M) siendo el valor de la altura total del diente (1,75 \cdot M)


Fórmulas constructivas de los engranajes rectos

Diámetro primitivoD_p = Z \cdot M
MóduloM = \frac {D_p}{Z}
Paso circularP_c= \pi \cdot M Pc = S + W
Número de dientesZ = \frac {D_p}{M}
Diámetro exteriorD_e = D_p + 2 \cdot M
Grueso del dienteS = \frac {P_c*19}{40}
Hueco del dienteW = \frac {P_c*21}{40}
Diámetro interiorD_i= D_p - 2,5 \cdot M
Pie del diente1,25 \cdot M
Cabeza del dienteM
Altura del diente(2,25 \cdot M)
Distancia entre centros\frac {(D_p+d_p)}{2}
Ecuación general de transmisión':  N \cdot Z= n \cdot z


Involuta del círculo base

Para el movimiento que se transmite entre un par de engranes, se suponen dos rodillos en contacto, en donde no hay deslizamiento, al diámetro de estos rodillos se les conoce como diámetro primitivo dp y al círculo que se construye con dp se le conoce como círculo primitivo. Con un diente de engrane se pretende prolongar la acción de los rodillos, y es por esa razón que el perfil que los describe es una involuta. Para el dibujado de la involuta es necesario definir primero el círculo base (ver sig. fig.).
i.- A partir del círculo primitivo Cp, en el cuadrante superior se traza una recta horizontal tangente al círculo obteniéndose el punto A.
ii.- Luego, pasando por el punto A se traza la recta de línea de contacto de ángulo Ψ (de presión).
iii.- Seguidamente se construye el círculo base concéntrico al círculo primitivo tangente a la línea de contacto, la cual fue dibujada empleando el ángulo de presión Ψ, obteniéndose así el punto B y el radio base rb (segmento OB).
Dibujado de la línea de contacto y el círculo base a partir del círculo primitivo
Para dibujar la involuta (ver sig. fig.) debe trazarse un radio del círculo base a un ángulo θ respecto al eje x, obteniéndose así el punto B, luego dibujamos una recta tangente a círculo base a partir del punto B y de longitud igual al arco AB, en donde A es el punto de intersección del círculo base con el eje x. obtendremos entonces un punto (x, y) que pertenece al lugar geométrico de la involuta del círculo base. Si repetimos el procedimiento anterior tres veces para distintos θ y unimos los puntos (x, y) obtenidos empleando plantillas curvas, apreciaremos un bosquejo similar al mostrado en la siguiente figura.
Dibujado de la involuta del círculo base
Las ecuaciones paramétricas que modelan el lugar geométrico de la involuta del círculo base pueden expresarse como:
 x= r_b \cdot cos(\theta) + r_b \cdot \theta \cdot sin(\theta)
 y= r_b \cdot sin(\theta) - r_b \cdot \theta \cdot cos(\theta)


Engranajes cilíndricos de dientes helicoidales


Engranaje helicoidal.
Los engranajes cilíndricos de dentado helicoidal están caracterizados por su dentado oblicuo con relación al eje de rotación. En estos engranajes el movimiento se transmite de modo igual que en los cilíndricos de dentado recto, pero con mayores ventajas. Los ejes de los engranajes helicoidales pueden ser paralelos o cruzarse, generalmente a 90º. Para eliminar el empuje axial el dentado puede hacerse doble helicoidal.
Los engranajes helicoidales tienen la ventaja que transmiten más potencia que los rectos, y también pueden transmitir más velocidad, son más silenciosos y más duraderos; además, pueden transmitir el movimiento de ejes que se corten. De sus inconvenientes se puede decir que se desgastan más que los rectos, son más caros de fabricar y necesitan generalmente más engrase que los rectos.
Lo más característico de un engranaje cilíndrico helicoidal es la hélice que forma, siendo considerada la hélice como el avance de una vuelta completa del diámetro primitivo del engranaje. De esta hélice deriva el ángulo β que forma el dentado con el eje axial. Este ángulo tiene que ser igual para las dos ruedas que engranan pero de orientación contraria, o sea: uno a derechas y el otro a izquierda. Su valor se establece a priori de acuerdo con la velocidad que tenga la transmisión, los datos orientativos de este ángulo son los siguientes:
Velocidad lenta: β = (5º - 10º)
Velocidad normal: β = (15º - 25º)
Velocidad elevada: β = 30º
Las relaciones de transmisión que se aconsejan son más o menos parecidas a las de los engranajes rectos.

[editar]Fórmulas constructivas de los engranajes helicoidales cilíndricos

Como consecuencia de la hélice que tienen los engranajes helicoidales su proceso de tallado es diferente al de un engranaje recto, porque se necesita de una transmisión cinemática que haga posible conseguir la hélice requerida. Algunos datos dimensionales de estos engranajes son diferentes de los rectos.

Juego de engranajes helicoidales.
Diámetro exteriorD_e = M_n \cdot \frac {Z} {cos \beta} + 2 \cdot M_n = D_p + 2 \cdot M_n
Diámetro primitivoD_p = M_n \cdot \frac {Z} {cos \beta} = P_c \cdot \frac {Z} {\pi} = M_c \cdot Z
Módulo normal o realM_n = D_p \cdot \frac {cos \beta}{Z} = \frac {P_n}{\pi} =D_p \cdot \frac {cos \beta}{Z}
Paso normal o realP_n = \pi \cdot M_n = P_c \cdot cos \beta
Ángulo de la hélicetg \beta = \pi \cdot \frac {D_p} {H} \cdot cos \beta = \frac {M_n} {M_a}
Paso de la héliceH = \pi \cdot D_p \cdot cotg \beta
Módulo circular o aparenteM_c = \frac {D_p} {Z} = \frac {M_n} {cos \beta} = \frac {P_c}{\pi}
Paso circular aparenteP_c = \pi \cdot \frac {D_p}{Z} = M_c \cdot \pi = \frac {P_c}{cos \beta}
Paso axialP_x = \frac {H} {Z} = \frac {P_n}{sen \beta} = \frac {P_c}{tg \beta}
Número de dientesZ = \frac {D_p}{M_c} = D_p \cdot \frac{cos \beta}{M_n}
Los demás datos tales como adendum, dedendum y distancia entre centros, son los mismos valores que los engranajes rectos.

Engranajes helicoidales dobles


Engranajes helicoidales dobles.

Vehículo Citroën con el logotipo de rodadura de engranajes helicoidales dobles.
Este tipo de engranajes fueron inventados por el fabricante de automóviles francés André Citroën, y el objetivo que consiguen es eliminar el empuje axial que tienen los engranajes helicoidales simples. Los dientes de los dos engranajes forman una especie de V.
Los engranajes dobles son una combinación de hélice derecha e izquierda. El empuje axial que absorben los apoyos o cojinetes de los engranajes helicoidales es una desventaja de ellos y ésta se elimina por la reacción del empuje igual y opuesto de una rama simétrica de un engrane helicoidal doble.
Un engrane de doble hélice sufre únicamente la mitad del error de deslizamiento que el de una sola hélice o del engranaje recto. Toda discusión relacionada a los engranes helicoidales sencillos (de ejes paralelos) es aplicable a los engranajes helicoidales dobles, exceptuando que el ángulo de la hélice es generalmente mayor para los helicoidales dobles, puesto que no hay empuje axial.
Con el método inicial de fabricación, los engranajes dobles, conocidos como engranajes de espina, tenían un canal central para separar los dientes opuestos, lo que facilitaba su mecanizado. El desarrollo de las máquinas talladoras mortajadoras por generación, tipo Sykes, hace posible tener dientes continuos, sin el hueco central. Como curiosidad, la empresa Citroën ha adaptado en su logotipo la huella que produce la rodadura de los engranajes helicoidales dobles.

[]Engranajes cónicos


Engranaje cónico.
Se fabrican a partir de un tronco de cono, formándose los dientes por fresado de su superficie exterior. Estos dientes pueden ser rectos, helicoidales o curvos. Esta familia de engranajes soluciona la transmisión entre ejes que se cortan y que se cruzan. Los datos de cálculos de estos engranajes están en prontuarios específicos de mecanizado.


Engranajes cónicos de dientes rectos

Efectúan la transmisión de movimiento de ejes que se cortan en un mismo plano, generalmente en ángulo recto aunque no es el unico angulo pues puede variar dicho ángulo como por ejemplo 45, 60, 70, etc, por medio de superficies cónicas dentadas. Los dientes convergen en el punto de intersección de los ejes. Son utilizados para efectuar reducción de velocidad con ejes en 90°. Estos engranajes generan más ruido que los engranajes cónicos helicoidales. En la actualidad se usan muy poco.


Engranaje cónico helicoidal

Se utilizan para reducir la velocidad en un eje de 90°. La diferencia con el cónico recto es que posee una mayor superficie de contacto. Es de un funcionamiento relativamente silencioso. Además pueden transmitir el movimiento de ejes que se corten. Los datos constructivos de estos engranajes se encuentran en prontuarios técnicos de mecanizado. Se mecanizan en fresadoras especiales.


Engranaje cónico hipoide


Engranaje cónico hipoide.
Un engranaje hipoide es un grupo de engranajes cónicos helicoidales formados por un piñón reductor de pocos dientes y una rueda de muchos dientes, que se instala principalmente en los vehículos industriales que tienen la tracción en los ejes traseros. Tiene la ventaja de ser muy adecuado para las carrocerías de tipo bajo, ganando así mucha estabilidad el vehículo. Por otra parte la disposición helicoidal del dentado permite un mayor contacto de los dientes del piñón con los de la corona, obteniéndose mayor robustez en la transmisión. Su mecanizado es muy complicado y se utilizan para ello máquinas talladoras especiales (Gleason)